Сенсорное воспитание дошкольников
В истории дошкольной педагогики, на всех этапах ее развития, эта проблема сенсорного воспитания занимала одно из центральных мест.
Компьютерно-телевизионные средства обучения
Информатизация общества — это глобальный социальный процесс, особенность которого состоит в том, что доминирующим видом деятельности...
3. При каких а разность корней уравнения равна 14?
4. При каких значениях параметра k произведение корней уравнения х2+3х+(k2-7k+12)=0 равно 0?
5. При каких а разность корней уравнения 2х2 - (а + 1)х + (а - 1) =0 равна их произведению?
Дополнительные задания:
6. В уравнении х2-2х+а=0 квадрат разности корней равен 16. Найти а.
7. Известно, что корни уравнения х2-5х+4=0 на 1 меньше корней уравнения х2-7х+3а-6=0. Найти а и корни каждого из уравнений.
8. Пусть х1 и х2 – корни уравнения 2х2-7х-3=0. Составить квадратное уравнение, корнями которого являются числа х1-2 и х2-2.
4. Подведение итогов занятия.
- Что нужно сделать, чтобы решить задачу на соотношение на корни квадратного уравнения?
Учащиеся в паре оценивают работу друг друга по пятибалльной шкале. Также учитель ставит по одному баллу наиболее активным учащимся.
5. Постановка домашнего задания
Задания, обязательные для выполнения:
В уравнении х2-4х+а=0 сумма квадратов корней равна 16. Найти а.
При каком значении а сумма квадратов корней уравнения х2+(2-р)х-р-3=0 равна квадрату разности корней этого уравнения?
Определить а таким образом, чтобы корни уравнения 2х2+(2а-1)х+а-1=0 удовлетворяли соотношению 3х-4х
=11.
Дополнительные задания:
Пусть х1 и х2 – корни уравнения 2х2-7х-3=0. Составить квадратное уравнение, корнями которого являются числа 2х1+3 и 2х2+3.
Не вычисляя корней уравнения 3х2+8х-1=0 найти х1х23+х2х13.
При каких значениях р и q корни уравнения х2+рх+q=0 равны 2р и ?
Занятие IV. Квадратный трехчлен: теорема Виета; знаки корней квадратного трехчлена; соотношения на корни квадратного уравнения
Цель: закрепление умения использовать теорему Виета для определения знаков корней квадратного трехчлена и решения задач на соотношения между корнями квадратного уравнения; применение имеющихся знаний при решении задач; формирование умения работать в группе.
Ход занятия:
Организационный момент.
Проверка домашнего задания: 3 ученика до начала занятия записывают решение задач №1-3 на доске. На занятии учащиеся проверяют решение, исправляют ошибки. Задачи №4-6 учитель проверяет индивидуально у каждого учащегося.
Решение задач. Класс делится на группы по 4-5 человек. Каждая группа получает по 2 блока заданий (у всех задания одинаковые), которые необходимо решить за определенное время (20 мин).
За каждое верно решенное задание первого блока будет ставиться 2 балла, второго блока – 3 балла.
За 17 минут до окончания занятия группы прекращают свою работу, начинается проверка и обсуждение решений, найденных группами. По результатам проверки подводятся итоги, и выявляется группа-победитель.
Задания:
Блок 1.
При каких значениях параметра а уравнение (а-2)х+(4-2а)х+3=0 имеет единственное решение?
При каких значениях а уравнение
(а-6а+8)+ (а
-4)х+(10-3а- а
)=0 имеет более 2-х корней?
При каком значении параметра а уравнение х2-2(а-1)х+а+5=0 имеет положительные корни?
При каком значении параметра а уравнение х2+(3а-5)х-2=0 имеет корни разных знаков?
При каком значении параметра а оба корня уравнения
х2-(3а-2)х-6а=0 неотрицательны?
При каких значениях параметра k сумма корней уравнения
х2-2k(х-1)-1=0 равна сумме квадратов корней?
Пусть х1 и х2 – корни уравнения 2х2-7х-3=0. Составить квадратное уравнение, корнями которого являются числа 1/x1 и 1/x2 .
Не вычисляя корней уравнения 3х2+8х-1=0, найти х1/х2+х2/х1 .