Сенсорное воспитание дошкольников
В истории дошкольной педагогики, на всех этапах ее развития, эта проблема сенсорного воспитания занимала одно из центральных мест.
Компьютерно-телевизионные средства обучения
Информатизация общества — это глобальный социальный процесс, особенность которого состоит в том, что доминирующим видом деятельности...
Задания.
Основная часть:
1. При каких значениях m ровно один из корней уравнения равен 0:
x2+(m+3)x+m-3=0
2. При каких значениях параметра р уравнение рх- х+3=0 имеет единственное решение?
При решении данного уравнения необходимо учесть, что может быть р=0. В этом случае уравнение также имеет единственное решение.
В общем случае условия существования единственного решения запишутся следующим образом:
или
Если то уравнение не имеет корней.
Если то уравнение имеет бесконечно много решений.
При каких значениях параметра а уравнение ах-4х+а+3=0 имеет не более одного корня?
Дополнительные задания:
4. При каких значениях а корни уравнения 4х2+(5а-1)х+3а=-а равны по модулю, но противоположны по знаку?
Найдите все значения параметра k, при которых уравнение (k-2)x-2kx+2k-3=0 имеет хотя бы один корень?
Доказать, что при любом значении а уравнение х2+(а-2)х+(а-3)=0 имеет два корня.
При каких значениях параметра а уравнение имеет единственное решение?
4. Подведение итогов занятия:
- Интересными ли явились задания?
- Не являются ли они сложными или, наоборот, простыми?
Выставление учениками самим себе баллов за каждое верно решенное задание (1 задание – 1 балл).
5. Постановка домашнего задания:
Задания, аналогичные задачам, решаемым на занятии:
№1. а) При каких значениях k оба корня уравнения х2+(16-k)х+k+8=0 равны 0?
б) При каких значениях а корни уравнения х2-2х+m-1=0
равны по модулю, но противоположны по знаку?
№2. При каких а уравнение
а) (а-4)х
+(2а-4)х-(а-2)=0 имеет не менее одного решения;
б) (а+1)х+2(а+1)х-2=0 не имеет корней.
Задания на самостоятельный поиск решения:
№3. а) Найти корни квадратного уравнения ах2+bх+с=0, если а–b+с=0.
б) При каких значениях параметра а уравнения равносильны? (Вспомнить, какие уравнения называются равносильными)
Литература: [3], [8], [12], [13], [18].
Занятие II. Теорема Виета. Знаки корней квадратного трехчлена
Цель: формирование умения определять знаки корней квадратного трехчлена, применяя теорему Виета.
Ход занятия:
Организационный момент. Сообщение темы и целей занятия.
Проверка домашнего задания: решение №1, №2 записано учителем на доске, ученики проверяют; №3: один из учеников, выполнивший задание №3а), записывает до начала занятия решение на доске, второй - №3б); затем задания разбираются. Если задания никем не выполнены, то решение объясняет учитель.
Обзорная лекция по теме «Теорема Виета. Знаки корней квадратного уравнения».
Теорема Виета: Если дискриминант (при А
0), то трехчлен Ax
+Bх+C имеет корни
и
, удовлетворяющие соотношениям:
(*)
И наоборот, если числа и
удовлетворяют соотношениям (*), то они являются корнями квадратного трехчлена Ax
+Bх+C.